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Abstract—In recent times, surge in the use of smartphones
in our daily lives has created a huge opportunity for paving
the road towards human-centric computing by utilizing the
rich data which gets recorded by it’s multiple sensors. Sensor-
based human activity recognition has a tremendous amount of
real-world applications such as health monitoring, surveillance,
smart homes, and ambient assisted living. This paper presents
a joint residual feature extractor and a transformer-based deep
neural network for end-to-end human activity recognition using
raw multi-sensor data captured from smartphones or wearable
devices. Unlike conventional handcrafted feature extraction, this
approach outperforms all present approaches showing state-
of-the-art generalizable performance over multiple benchmark
datasets. It achieves a test accuracy of 95.2% on the UCI HAR
dataset and 96.4% test accuracy on the WISDM dataset.

Index Terms—Deep learning, Activity Recognition, Transform-
ers, Smartphones, Time-series

I. INTRODUCTION

Smartphones and smart-wearables have significantly trans-
formed human lives and taken over the world by a storm.
With the advancements in their electronic designs, huge
number of sensors are being embedded within them such
as accelerometers, magnetometers, barometers, gyroscopes,
proximity sensors, pressure, bluetooth, temperature and light
sensors. Activity detection has emerged as a recent wave of
context-aware customised applications in a variety of domains.
All vertical industries can utilize the huge amount of data
recorded in the sensors for applications such as monitoring
patient’s health, businesses tracking customers, tracking fitness
progress, monitoring soldiers in military settings and many
more. Due to this, human activity recognition (HAR) using
multiple sensors has become an active area of research. View-
ing from an algorithmic perspective, HAR involves mapping
the raw windowed time-series data captured by these sensors
as input to HAR algorithm which detects the smartphone user’s
activity and returns as output in real-time. Handcrafting such
an algorithm is challenging and a time consuming procedure
requiring a lot of domain expertise which makes it necessary
to analyze every sensor in tiny details. Due to such challenges,
Machine learning (ML) has been used widely in literature [1]
for human activity recognition from sensors for it’s capability
to directly learn a mapping function between input and output.
In [2], A combination of Support Vector Machine (SVM)
and K-nearest neighbours (KNN) algorithm was used for

Fig. 1. Flow of the proposed system

sensor based HAR. In [3], the authors extracted statistical
signal properties such as Mel-frequency cepstral coefficients as
features and designed an SVM model combined with Particle
swarm optimization method for HAR on motion sense dataset.
In [4], the authors compared Random forest algorithm with
other shallow learning models such as SVM, KNN, Naive
Bayes, AdaBoost etc and showed that Random forest achieved
higher accuracy on three sensor based HAR datasets compared
to the other models. Although having higher number of
sensors provides more data, but the above discussed ML based
activity recognition algorithms may face challenges in terms of
complexity to deal with such high dimensional data available.
Neural networks are known for their ability to learn non-linear
high dimensional mappings between raw inputs and outputs
due to which a lot of work has been done on deep learning
(DL) based HAR. In [5], multiple deep learning architectures
were evaluated on the UCI HAR dataset which showed that
a one-dimensional Convolutional neural network along with
statistical features outperformed all approaches but upon eval-
uating the same model on a similar dataset called m-health,



the performance degraded significantly which shows that hand
crafted statistical features make the model less generalizable
in real world sensor data which would have stochastic patterns
and each device has different types of sensors for which the
same feature extraction methods won’t work. Moreover, these
handcrafted feature extraction pipelines require a lot of domain
expertise and only shallow features can be learnt from these
approaches. Due to these reasons, most the present state of
the art methods for human activity recognition are limited
in terms of model generalization and real-world performance.
Convolutional neural networks (CNNs) and Recurrent neural
networks (RNNs) are the most used deep learning architectures
for the HAR problem. It was mentioned in a study on HAR
[6] that RNNs are better at recognizing short activities which
have an order while CNNs are better for recognizing long
term activity patterns. Zeng et al. [7] presented a standard
CNN for classifying accelerometer data by separating data
of each axis of the sensor into separate channels. In [8],
the authors developed a weight sharing CNN approach for
HAR for dealing with multi-modal data. In [9], recurrent
architectures such as RNNs and LSTMs were explored for
HAR. These recurrent models learn to map each time window
of the data to an activity class where each timestep of that
window is read sequentially one at a time and all the output
scores of each timestep are aggregated together to get the
activity label per window. A combination of CNN and LSTM
was developed in [10] where the authors claim that the CNN
layers are responsible for feature extraction from raw data and
the LSTMs capture the temporal patterns from the extracted
features. After reviewing the literature above, it can be seen
that there is a need for end-to-end models with low complexity
which can capture patterns from the raw sensor readings and
can handle the unpredictable changes in the data in real-time
deployed settings.

Motivated from the above reasons, this paper presents
RestHAR, a robust self-attention based transformer neural
network with only 0.4 million parameters for human activity
recognition which shows state of the art performance on the
UCI-HAR and WISDM dataset benchmark. To the best of the
author’s knowledge, this is the first work on transformer based
time-series HAR from raw data of smartphone sensors.

II. DATA PREPARATION

The input data collected from the m sensors each with n
axes record a 2D time-series sensor data. The first dimension
of the data represents the t timesteps per window and the
second dimension represents all the m× k sensor readings as
channels. This data is converted into batches of size b. Thus
the final training data is a 3D array of shape (b, t,m×k). For
evaluation of our model, two benchmark datasets have been
used which are discussed in this section.

A. UCI HAR dataset

The raw version of the UCI HAR dataset [11] is used in
this work which consists of triaixal inertial signal data from
accelerometer and gyroscope sensors. For the data acquisition

phase of this dataset, 30 subjects with a waist-mounted smart-
phone performed 6 types of activities i.e, walking, walking
downstairs, walking upstairs, laying down and standing. These
experiments were recorded by a video camera for efficient
labelling by multiple annotators. The dataset was further split
into training split with 70% of the total data and testing split
with 30% of the data for robust evaluation. The accelerometer
and gyroscope readings were sampled at 50 Hz for obtaining
time windows of 2.56 seconds each with 128 sensor readings
per window (50% overlap).

B. WISDM dataset

The WISDM Smartphone and Smartwatch Activity and
Biometrics Dataset [12] contains sensor recordings from 51
people who completed 18 tasks in three minutes each. Each
participant wore a smartwatch on his or her dominant hand
and carried a smartphone in their pocket. A custom Android
app that operated on the smartphone and wristwatch was in
charge of the data collection. The data was sampled at 20
Hz and 10 second windows were extracted, each window
having 200 readings from the triaxial accelerometer sensor.
The dataset was split in a ratio of 80% : 20% training and test
data respectively.

III. PROPOSED ARCHITECTURE

A. Feature extraction network

It has been observed in literature than CNNs are powerful
feature extractors in case of images. Recently, they have
also shown great performance for extracting features from
raw signals as well as time-series data and very deep CNN
architectures have been experimented. Although increasing
layers and making the network deeper is a easy way to increase
accuracy, but it also has a limit and the later layers learn very
less useful patterns thus resulting in decreased performance
as shown in the ResNet paper [13]. Inspired from ResNet,
RestHAR adapts a residual feature extraction network with
depthwise separable convolutions as illustrated in figure 2. The
main components of the feature extractor are discussed below.

1) Depthwise separable 1D convolutions: Unlike
standard convolutions, depthwise separable convolutions
are a two step process starting with a filtering stage
where depthwise convolution operation is applied on
each of the channels, which in our case are the m × k
time series readings from the sensors. In the next stage,
a pointwise convolutional operation takes place on the
intermediate output from the first step. The advantages
for using depthwise separable convolutions is the
reduction in computational complexity as well as the
fact that different sensor readings would yield different
types of patterns, learning each of them separately
boosts the quality of the features extracted by the
network.

2) Residual blocks: The core of the feature extraction
network is the stack of R Residual blocks connected



Fig. 2. Depthwise separable residual feature extractor network

together with skip connections over each of these blocks.
As we don’t know the ideal number of layers (or
residual blocks) for a neural network, which may vary
depending on the dataset’s complexity, generalizability
of the architecture gets limited in traditional CNNs.
Adding skip connections to our network enables the
network to learn negligible weights for the layers that
are not relevant and do not contribute value to overall
accuracy, rather than using the number of layers as an
essential hyperparameter to tune. Each block consists
of three depthwise separable 1D convolutional layers
with Batch Normalization layers in between. The first
two convolutional layers are ReLU activated and the last
layer gets concatenated with the skip connection from
the previous residual block and the resulting output gets
ReLU activated and passed further into the next residual
block.

B. Transformer based classifier

The transformer model proposed in this paper has an archi-
tecture as shown in figure 3. The dynamic features extracted
at each window from the sensors are passed into a block of
stacked n transformer encoders. The underlying design of each
transformer encoder is shown in figure 4. The feature vector
first passes through a layer normalization block followed by
a Multi-Head attention block with h parallel attention heads.
An MLP head is added to each of these transformer encoder
which consists of f Feed-forward layers and f can be changed

as an hyperparameter. Two skip connections are made from the
input stage and after multi-head attention module to ensure that
richer patterns are captured also at the later encoders rather
than only the first few encoders. Output of each transformer
encoder serves as the feature vector for the next encoder. Final
output of the nth encoder goes into a classfier made up of feed
forward layers which classifies that particular time window
into the recognized activity.

Fig. 3. RestHAR architecture



Fig. 4. Transformer encoder

IV. TRAINING MECHANISM

The feature extraction network and the transformer networks
are connected together with shared weights. The models are
trained together and jointly optimized using the following
configuration.
Loss function: The loss function L used in this paper is
the Binary cross entropy loss function. As seen in equation
1 We compute the loss for each class label per observation
which indicates and add the results. Here, M represents the
total number of activity classes which equals to six.

L = −
M∑
c=1

yo,c log(po,c) (1)

Optimizer: For the optimization of the loss function dis-
cussed above, the Adam optimizer [14] is used, which is used
widely for it’s fast and efficient performance with very low
memory requirements.

Fig. 5. Training and validation accuracy on UCI HAR dataset

Fig. 6. Training and validation accuracy on WISDM dataset

V. RESULTS AND EVALUATION

In this section, we use the two benchmark datasets discussed
in section II to evaluate the performance of our model. As
seen in figure 5 and figure 6, the model learns well with
zero overfitting on both datasets almost at same performance.
Although the time windows chosen were 2.56 seconds on
UCI HAR and 10 seconds on WISDM dataset, the model’s
performance doesn’t degrade, thus showing the capability of
the model to learn global dependencies such as CNNs and
local dependencies such as RNNs. The confusion matrices in
figure 7 and 8 figure illustrate the class-wise performance of
the model. It can be clearly seen that the model shows very less
misclassification even between those types of activities which
are hard to distinguish, such as 8% and 10.5% misclassification
rate in recognizing walking upstairs and downstairs as seen in
figure 7 and 8 respectively.

Fig. 7. Confusion matrix on WISDM dataset

VI. CONCLUSION

In this paper, a novel end to end deep learning model for
human activity recognition is proposed which shows state of



Fig. 8. Confusion matrix on UCI HAR dataset

the art performance in terms of generalizability and accuracy
on two benchmark datasets (UCI HAR and WISDM). It is ob-
served that upon both datasets that a few minimal configuration
of our architecture with lesser number of blocks is capable to
get such high accuracies, which shows that the architecture is
deployable in low powered edge devices and wearables which
can handle models with lesser parameters.
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[10] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[11] D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, et al.,
“A public domain dataset for human activity recognition using smart-
phones.,” in Esann, vol. 3, p. 3, 2013.

[12] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition us-
ing cell phone accelerometers,” ACM SigKDD Explorations Newsletter,
vol. 12, no. 2, pp. 74–82, 2011.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.


