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Abstract: In the recent pandemic, accurate and rapid testing of patients remained a critical task in1

the diagnosis and control of COVID-19 disease spread in the healthcare industry. Because of the2

sudden increase in cases, most countries have faced scarcity and a low rate of testing. Chest x-rays3

have been shown in the literature to be a potential source of testing for COVID-19 patients, but4

manually checking x-ray reports is time-consuming and error-prone. Considering these limitations5

and the advancements in data science, we proposed a Vision Transformer based deep learning6

pipeline for COVID-19 detection from chest x-ray based imaging. Due to the lack of large data sets,7

we collected data from three open-source data sets of chest x-ray images and aggregated them to8

form a 30K image data set, which is the largest publicly available collection of chest x-ray images9

in this domain to our knowledge. Our proposed transformer model effectively differentiates10

COVID-19 from normal chest x-rays with an accuracy of 98% along with an AUC score of 99% in11

the binary classification task. It distinguishes COVID-19, normal, and pneumonia patient’s x-rays12

with an accuracy of 92% and AUC score of 98% in the Multi-class classification task. For evaluation13

on our data set , we fine-tuned some of the widely used models in literature namely EfficientNetB0,14

InceptionV3, Resnet50, MobileNetV3, Xception, and DenseNet-121 as baselines. Our proposed15

transformer model outperformed them in terms of all metrics. In addition, a Grad-CAM based16

visualization is created which makes our approach interpretable by radiologists and can be used17

to monitor the progression of the disease in the affected lungs, assisting healthcare.18

Keywords: Vision Transformer; COVID-19; Deep learning; Data science; Healthcare; Interpretabil-19

ity; Transfer Learning; Grad-CAM20

1. Introduction21

As of June 2021, there have been 173 million COVID-19 cases worldwide, with22

new cases rapidly increasing at an alarming rate and showing no signs of abating [1]. If23

COVID-19 infection is not detected early enough, it can induce a flu-like sickness that24

can proceed to acute respiratory distress syndrome (ARDS), which can be deadly [2–8].25

Due to limited resources and the amount of data accessible to the scientific community,26

early diagnosis of COVID-19 remains a tough challenge despite recent worldwide27

research efforts in healthcare [9]. RT-PCR has been the standard and approved diagnostic28

approach for COVID-19, however it has a number of drawbacks. It is costly, risky to29

medical staff, and there are just a few diagnostic test kits accessible. Medical imaging30
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techniques such as x-ray and CT-based screening, on the other hand, are relatively31

safe, faster, and more widely available. X-ray imaging has been frequently utilized for32

COVID-19 screening in comparison to CT imaging since it takes less imaging time, is33

less expensive, and x-ray scanners are commonly available even in remote regions [10].34

Because of the complicated morphological patterns of lung involvement, which can35

fluctuate in degree and appearance over time, the accuracy of a COVID-19 infection36

diagnosis using chest imaging is strongly reliant on radiological proficiency. The scarcity37

of competent radiologists, particularly in developing countries, affects the reliability of38

sophisticated chest examination interpretation. In a study by Cozzi et al. [11], it was39

found that chest x-ray imaging achieved a balanced real-world diagnostic performance40

with accuracy in the range of 76% to 86%, and 89% sensitivity. They showed that the41

specificity was much greater for experienced radiologists than that of less experienced42

ones. Deep Learning and Data Science are widely employed in many fields of medical43

imaging, and they have shown excellent results in Thoracic Imaging [12]. There have44

been many approaches for diagnosing COVID-19 from CT and x-ray images that made45

use of Deep Learning/Data Science recently.46

There have been some efforts on using unsupervised learning based approaches for47

this task. For instance, in [13], Mittal et al. developed an unsupervised learning-based48

technique for COVID-19 diagnosis from multiple modalities of chest imaging. They used49

a novel clustering based Gravitational Search algorithm for labelling the images into50

covid and non-covid. They achieved an accuracy of 99.36% on the ultrasound dataset51

but their approach achieved only 64.41% on CT dataset. In [14], Rui et al. used an52

Pulmonary opacity detecting model trained using unsupervised learning over a small53

dataset of COVID CT scan images and they achieved an accuracy of 95.5% for detection54

of COVID-19.55

A few object detection based approaches have also been used for detecting COVID-56

19. For example, the authors in [15] proposed a YOLO based object detection model57

for detecting and differentiating COVID-19 from other thoracic diseases. Their model58

achieved a detection accuracy of 90.67%. In [16], Fatima et al. used single shot multi-box59

detector based object detection technique which creates bounding boxes over the areas60

of the chest x-rays and each bounding box is classified as normal or COVID-19. They61

report an accuracy of 92% for classifying COVID-19.62

The most used approach for solving this task has been using deep convolutional63

neural networks (CNNs) with supervised learning [17–19]. As an example, a work64

by Mukherjee et al. [20] proposed a deep CNN based architecture and trained it on a65

combined data set of chest x-ray and CT images where they achieved an overall accuracy66

of 96.28%. In [21], Li et al. proposed a stacked autoencoder model where the first four67

layers consist of four autoencoders to extract better features from CT images. The final68

model is built by chaining together these four autoencoders and linking them to the69

dense layer and the softmax classifier. The authors report achieving an accuracy of70

94.7% on the CT images data set. In [22], Chakraborty et al. proposed Corona-Nidaan, a71

lightweight deep CNN architecture trained on chest x-ray data set with 3 classes which72

achieved an accuracy of 95%. In [23], the authors used transfer learning with a VGG-1673

model pre-trained on pneumonia detection and further fine tuned it over a COVID-1974

detection data set achieving an accuracy of 93%, although they sometimes mis-classify75

COVID-19, viral pneumonia, and normal cases. In [24], Khan et al. presented a Xception76

network based architecture with pre-trained weights from ImageNet, which they fine77

tuned over a 1.2K images data set and they report an overall accuracy of 89.5% on78

multi-class classification. In [25], the authors proposed a two level pipeline with an79

image segmentation block made up of a fully connected DenseNet backbone and a80

classification block where Resnet-18 was used patch-wise which achieved an accuracy81

of 91% upon training on a 354 images data set and upon evaluating over 99 images.82

In [26], Mishra et al. presented an approach with a two neural network based system83

and reported a maximum accuracy of 96%. Authors in [27] used an attention based84
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pre-trained VGG-16 model and fine tuned it over 3 data sets with 1125, 1638, and 213885

images, respectively. Upon evaluation, they achieved an accuracy of 79.58%, 85.43%,86

87.49% over the three data sets, respectively. Shankar et al. [28] proposed a BMO-CRNN87

algorithm for the covid-19 detection efficiently. In [29], Xueyu et al. fine-tuned multiple88

pre-trained models over a 2500 CT scan images data set and achieved 82.5% accuracy.89

Luz et al. [30] proposed models based on the EfficientNet family with a hierarchical90

classifier and achieved an overall accuracy of 93.9%. Pham et al. [31] presented a91

comprehensive study on transfer learning for COVID-19 detection from CT images by92

training and comparing 16 pre-trained models.93

After reviewing the relevant literature, it is clear that despite the effectiveness of deep94

learning-based frameworks in COVID-19 identification, there are a few flaws. Most95

of the models have been trained and evaluated on data sets with very less samples96

which can lead to improper generalization due to which the model might perform very97

poorly in real world and having a small test set might result in missing out on false98

positives or negatives. With this motivation, we have conducted this research with main99

contributions highlighted as follows:100

• Due to lack of large public data sets, we collected and merged three standard101

data sets 1,2,3 to form a 30K chest x-ray images COVID-19 data set for multi-class102

classification and a 20K images data set for binary classification. These two data103

sets have equal number of images in each class making it the largest and balanced104

data set on COVID-19 imaging based detection available as open-source, which can105

help the research community in training much more accurate and generalizable106

models in the future.107

• We implemented a model based on Vision Transformer (ViT) architecture on both108

data sets and achieved a state-of-the-art overall accuracy of 98.4% in distinguishing109

COVID-19 positive from normal x-rays, and an accuracy of 92.4% in distinguishing110

COVID-19 from pneumonia and normal x-ray images.111

• For evaluation, we fine-tuned multiple state-of-the-art baseline models which112

are widely used in literature such as Inception-V3, Resnet-V2, EfficientNet-B0,113

MobileNet-V2, VGG-16, Xception, and DenseNet-121 on both of the data sets and114

compared these with our proposed model on multiple standard metrics.115

• For better model interpretability and ease of diagnosis, we created Grad-CAM based116

visualizations of COVID-19 progression in the lungs, which assists the diagnosis117

process for healthcare.118

The rest of this paper is divided into four sections, with multiple subsections within119

each of them. Section 2 is focused on the proposed model’s architecture and training120

pipeline. Section 3 discusses the fine-grained details of our data collection and pre-121

processing pipeline, followed by performance evaluation, comparison with baselines,122

and interpretable visualizations. Section 4 presents an overview on the real-world utility123

of our methodology in order to assist health services during emergency times. Section 5124

concludes this work.125

2. Model Architecture and Pipeline126

This section covers information about the proposed transfer learning model as well127

as critical parameter evaluations, fine-tuning steps, and model comparisons.128

2.1. Architecture129

After the success of Transformers in solving natural language processing problems130

[32], Dosovitskiy et al. in [33] presented the Vision Transformer (ViT) model. When131

trained on enough data, ViT beats state-of-the-art CNN with around four times less132

1 https://data.mendeley.com/datasets/9xkhgts2s6
2 https://data.mendeley.com/datasets/8h65ywd2jr/3
3 https://www.kaggle.com/endiqq/largest-covid19-dataset
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Figure 1. The proposed ViT model for COVID-19 detection.

computing resources. ViT tries to resemble the original transformer architecture [34]133

as much as possible. We designed a COVID-19 detection pipeline utilizing the Vision134

Transformer model and fine-tuned it on our dataset with a custom MLP block. The135

initial part of the network has a Patch Encoder layer which reshapes the input image into136

multiple flattened patches. Along with the patches, positional embeddings are added137

to form a sequence, because only sequential data is compatible with the Transformer138

encoders. The Transformer encoder used is same as [34] and contains multi-headed self-139

attention layers and multiple Multi-layer Perceptron (MLP) blocks. ViT’s self-attention140

layer enables it to integrate information globally throughout the full picture. To recreate141

the visual structure from the training data, ViT learns to encode the relative placement142

of the patches. Self-attention has a quadratic cost as each pixel in the image is given as143

input, self-attention requires each pixel to pay attention to every other pixel. Because the144

quadratic cost of self-attention is prohibitively expensive and does not scale to a reason-145

able input size, the image is separated into patches. Because it does not establish any146

additional dependencies between the training images, Layer Norm is used before each147

block which assists in reducing training time and improving generalization performance.148

The overall architecture has been illustrated in Fig. 1.149

2.2. Fine-tuning procedure150

We used the ViT L-16 model for the initial stage of our model, which is the “Large"151

variant with a patch size of 16 × 16. The ViT model had pre-trained weights from152

training on ImageNet data [35]. This initial stage consists of 23 transformer encoder153

layers stacked on top of each other. We removed the pre-trained MLP prediction block154

and attached an untrained set of feed-forward layers constituting the custom MLP block155

which can be seen in Fig. 2. The flattened output of the final transformer encoder is156

passed through two sets of batch normalization and dense layers constituting the MLP157

block. Batch normalization is a neural network layer that allows the model’s other158

layers to learn more independently [36]. It is used to make the output of the preceding159

layers more natural and to make the activations scale the input layer. Learning becomes160

more efficient when batch normalization is utilized, and it may also be employed as a161

regularization to prevent model overfitting. The first dense layer consists of a Gaussian162

error linear unit (GELU) based activation with 120 neurons. GELU has been widely used163
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in revolutionary transformer models such as GPT-2 [37], BERT [38], and also in vision164

transformers [33] due to it’s deterministic non-linearity that encapsulates a stochastic165

regularization effect [39], which leads to a major performance boost in most models with166

complex transformer architectures. The last dense layer has softmax activation and we167

use L2 regularization [40] to minimize overfitting as much as possible.168

Figure 2. Custom MLP block attached to the Vision Transformer

2.3. Model training mechanism169

We use the NovoGrad optimizer with a categorical cross-entropy loss function to170

train our model for multi-class classification, and binary cross-entropy loss in the case171

of binary classification. In each case, label smoothing of 0.3 was added which helps172

to make the neural network generalize on unseen data by adding noise to the labels173

[41]. NovoGrad performs similarly to SGD but with gradient normalization per layer,174

making the optimizer more robust to initial learning rate selection. When compared to175

Adam, NovoGrad uses less memory and is more numerically stable due to which the176

training time of our model reduced without a drop in performance. It broadens Adam177

and decouples weight decay from regularisation. It also has half the memory cost of178

Adam and similar memory needs to SGD with momentum. We also use the adaptive179

learning rate scheduler and callbacks from the Keras library [42] which automatically180

reduces the learning rate and stops over-training the model if the validation accuracy181

does not improve. The data set was randomly split into train/validation/test sets with182

75%/15%/10% of all the images, respectively.183

As seen in Fig. 3, multiple metrics were monitored during the training process where all184

of those showed a progressively increasing curve even on validation.185

1. Accuracy: The most common performance metric in any classification problem186

is the accuracy metric. For the multi-class classification, the categorical accuracy187

was chosen which resembles the average accuracy over all the three classes of chest188

x-ray images. The binary classification involved the binary accuracy metric which189

measures how many times the predicted label matches the true label for the chest190

x-ray image.191

192
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2. AUC score: The area under the ROC curve (AUC) score shows how well predic-193

tions are ranked across all the classes and how much the model can distinguish194

between each class. It ensures that performance across all feasible categorization195

criteria is aggregated. It has been proved in the literature that AUC score is a more196

robust metric to measure the ability of a classifier than the accuracy [43].197

198

3. Precision: Precision is defined as the number of true positives divided by the199

number of true positives plus the number of false positives.200

201

4. Recall: Recall is defined as the number of true positives divided by the number of202

true positives plus the number of false negatives.203

3. Experimental Results and Discussion204

3.1. Data set205

We constructed a three-class data set of 30K chest x-ray pictures with labels COVID-206

19 - for patients with COVID-19 infection; normal - for stable patients; and pneumonia -207

for patients with viral and bacterial pneumonia, following the pattern of likely classes208

reported in the literature. We took 5500 COVID images and 4044 normal images from209

El-Shafai et al. [44]. Another 1281 COVID-19 images, 3270 normal images, and 4657210

pneumonia images were taken from Sait et al. [45]. Finally, we took 3000 normal images,211

6045 pneumonia images, and 4038 COVID-19 images from the COVID-Ti data set by Qi212

et al. [46]. The distribution of the aggregated data has been visually illustrated in Fig. 4.213

To make our data set completely balanced we sampled top 10K images from each class214

by ranking them based on resolution, making it a chest x-ray data set of 30K images215

for COVID-19 detection. This is, to the best of our knowledge, the largest open source216

collection of chest x-ray images for the detection of COVID-19 and pneumonia till date.217

3.2. Pre-processing218

Each image in the gathered data set is passed through a minimal image pre-219

processing pipeline which ensures to make all images compatible for the model training.220

The following are the steps in the pipeline:221

1. Resize: As neural network models have a fixed-size input layer, all images must222

be scaled to the same size. Therefore, we resize all the images in the data set to 224223

× 224 pixels.224

225

2. Interpolation: There are a few images in the data set which are of size lesser than226

224 × 224. While increasing their size, the estimation of new pixels needs to be227

done efficiently in order to retain quality. This process is termed "Interpolation" of228

images. For our pipeline we used the nearest neighbour interpolation, in which229

the closest pixel value to the supplied input coordinates is used to approximate the230

output pixel value. This approach is straightforward to implement, and there is no231

bogus data in the end result [47].232

3.3. Data augmentation233

In order to develop accurate and generalizable deep learning models, supervised234

learning requires large amounts of data. In our training pipeline, we employed a variety235

of data augmentation techniques such as random rotation, width shift, height shifts, and236

flipping which have been demonstrated in the literature to be beneficial in increasing237

deep learning model performance [48,49].238

3.4. Testing environment239

All the training and testing pipelines for the proposed models, as well as baselines240

were implemented using TensorFlow 2.4 framework [50] in a Python 3.8 virtual environ-241

ment. The graphics processing unit used in the training pipeline was a 4.1 TFLOPS Tesla242
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Figure 3. Performance measures during training
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Figure 4. Data set distribution and description

K80. The net available RAM was 24 GB. Jupyter notebooks were utilized to conduct the243

experiments.244

3.5. Model evaluation245

Our proposed COVID-Transformer was evaluated over the test set of both of our246

multi-class and binary classification data sets. It can be observed from Fig. 5(a) that our247

model is capable in distinguishing between all the three classes very accurately. Although248

the amount of false positives and true negatives are less, but the model sometimes249

confuses between COVID-19 and other types of pneumonia, which is acceptable as250

COVID-19 is itself a form of pneumonia and it is very tough even for expert radiologists251

to distinguish between the two. As observed in Fig. 5(b), our proposed model performs252

extremely well over the binary classification data set with only 21 out of 1000 images253

misclassified. The overall performance metrics over the test data sets have been outlined254

in Table 1. The multi-class classification model works well, with an accuracy of 92% and255

an AUC score of 98%. In this situation, the accuracy is lower than the AUC score because256

only images projected as pneumonia but really COVID-19 are misclassified, while all257

other categories are correctly classified, hence the AUC score is not much affected. The258

binary classification model achieves an accuracy of 98% and an AUC score of 99% which259

is suitable for real-world deployment as a diagnosis tool for detecting COVID-19 as it260

has significantly higher performance than standard RT-PCR tests.261

3.6. Ablation experiments262

In order to ensure that our transfer learning architecture is optimal, we conduct263

a comprehensive ablation study on the multi-class classification data set. We first264

experiment by modifying the custom block using different number of layers, activations,265

and order of layers. First, we observe that using only one dense layer with Batch266

normalization and ReLU activation, the accuracy drops down to 90%. Upon removing267

the Batch normalization the accuracy further degrades to 89%. However, if we replace268

ReLU with the GeLU activation function, a single dense layer with Batch normalization269

achieves an accuracy of 91% and 90% without Batch normalization. This shows that270

GeLU activation is slightly more effective in processing the outputs of the stacked271

transformer encoders compared to the ReLU activation. Next, we further experiment272

with a custom MLP block of two GeLU activated dense layers with and without batch273

normalization, where the accuracy increases to 92% and 91%, respectively. However, if274

we further add another dense layer with and without batch normalization, the training275
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Model Accuracy Precision Recall F1 score AUC

Binary-class 0.98 0.97 0.97 0.97 0.99

Multi-class 0.92 0.93 0.89 0.91 0.98

Table 1: Evaluation of the proposed model

accuracy increases whereas the testing accuracy drops to 88% and 89%, respectively.276

This is a clear indication that our model results in overfitting beyond 2 dense layers, thus277

we decide to keep a custom MLP block with two batch normalization and dense layers278

in the final architecture.279

3.7. Comparison with baseline models280

As our data set has not been evaluated using other models in the literature, we fine-281

tuned some of the widely used state-of-the-art models on both variants of our data set.282

All the data preparation and image augmentation steps are same for the baselines, except283

for some of the pre-processing functions which are necessary for input to the models.284

For Inception-V3 and Xception fine-tuning, the images were re-sized to 299 × 299 pixels.285

The same data augmentation techniques as for our proposed COVID-Transformer model286

were used. The MobileNet-V2, ResNet-V2-50, DenseNet-121, VGG-16, and EfficientNet-287

B0 models have a standard size requirement of 224 × 224 pixels, which is same as288

of our COVID-Transformer model, thus we used the same data pre-processing and289

augmentation steps for fine-tuning them. From Table 2, it can be noted that among290

the baselines, MobileNet-V3 and Xception perform the best with 90% Accuracy on the291

multi-class classification problem. Our COVID-Transformer model outperforms all the292

baselines in terms of accuracy, precision, F1 score, and AUC score.293

3.8. Grad-CAM visualization294

For better visual representation and model interpretability, the Grad CAM Map295

based illustration introduced by Selvaraju et al. [51]. is shown in Fig. 6. The Grad296

CAM Map visualization has the capability to highlight affected areas of the lungs that297

are significant for disease predictions as well as disease development. The images are298

obtained by passing the output of the embedding layer present in our model at the299

beginning just after the input layer.300

Fig. 6(a) shows a normal patient with no disease having no highlighted region in301

the lungs. Fig. 6(b) shows pneumonia patient’s lungs with affected regions highlighted302

in blue and green. Fig. 6(c) shows a COVID-19 infected patient with mostly yellow and303

red highlighted regions which indicate severe infection. The figure clearly shows that304

our suggested methodology recognizes and differentiates relevant impacted areas from305

COVID-19 and other pneumonia images. COVID-19 impacts the lungs considerably306

more intensively than other types of pneumonia, hence our model emphasises this by307

highlighting yellow and red areas in the COVID patient’s x-ray image.308

4. Case Study in Medical Services309

Health systems in both rich and poor nations were overburdened by the COVID-19310

outbreak. Sustainable Development Goals (SDGs) planned for 2025 will be affected by311

the pandemic-related losses, there is no question about it. As a result of the epidemic,312

there was a window of opportunity to take use of current digital solutions and discover313

new ones. These solutions can aid in the fulfilment of the SDGs, particularly those314

that pertain to health. In this sense, achieving global health coverage is an important315
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Model Accuracy Precision Recall F1 score AUC

Inception-V3 [31] 0.90 0.89 0.91 0.89 0.92

EfficientNet-B0 [30] 0.89 0.88 0.89 0.88 0.92

MobileNet-V2 [31] 0.90 0.90 0.89 0.90 0.92

ResNet-V2 [29,31] 0.88 0.87 0.86 0.86 0.93

VGG-16 [23,27,29,31] 0.87 0.87 0.85 0.86 0.90

Xception [24,31] 0.90 0.92 0.87 0.90 0.93

DenseNet-121 [25,29,31] 0.88 0.90 0.85 0.87 0.92

COVID-Transformer (Ours) 0.92 0.93 0.89 0.91 0.98

Table 2: Performance comparison of our COVID-Transformer with baseline models on the multi-class classification
problem

Figure 6. Grad-CAM visualization for the three classes
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Figure 7. Flow of deployable solution

SDG. Early-diagnosis is an important factor in reducing the number of deaths from316

COVID-19, which almost becomes impossible when there is a steep rise in infections317

concentrated in a particular location. If an infected individual is isolated at the right time,318

multiple infections from further transmissions can be prevented. Our proposed method319

for X-Ray based detection of COVID-19 would be an efficient addition to the healthcare320

system boosting the global health coverage. It can be used as an aid for radiologists321

to reduce human-errors in their diagnosis, as well as can be used as a single tool to322

detect COVID-19 in places where radiologists are not adequate due to infections rising323

at a breakneck pace. Fig. 7 shows the typical flow of our method when deployed in a324

real-world setting to have zero human-error diagnosis.325

5. Conclusion326

In this research, we proposed a robust and interpretable deep learning model327

that can efficiently diagnose COVID-19 infection at scale in real-world situations for328

healthcare. For this objective, a 30K chest x-ray image collection was produced by329

combining several open-source data sets. The model architecture chosen was based on330

the Vision Transformer and it showed high performance with accuracy and AUC score331

as high as 98% and 99%, respectively. For making our model trustworthy, we made an332

interpretable inference pipeline with Grad-CAM based visualizations per image. We333

believe that with the help of our proposed approach, chest x-ray images can also be334

used as a crude and low-cost bed-side diagnostic tool for detecting COVID-19. This may335

be extremely valuable in areas where quick testing is unavailable, and it may also be336

used as a second screening method after the standard RT-PCR test to verify that any true337

negative or false positive cases do not occur. Our future work will focus on proposing338

another variant of the Vision Transformer for further improving the performance, given339

the availability of larger data sets.340
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Figure 5. Confusion matrix for both types of classification
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